English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The FEBS journal 2012-Jan

Identification of Tyr74 and Tyr177 as substrate oxidation sites in cationic cell wall-bound peroxidase from Populus alba L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jun Shigeto
Yoshitaka Itoh
Yuji Tsutsumi
Ryuichiro Kondo

Keywords

Abstract

Cationic cell wall-bound peroxidase (CWPO-C) has the capability to oxidize sinapyl alcohol, ferrocytochrome c, and synthetic lignin polymers, unlike most peroxidases that have been characterized in flowering plants, such as horseradish peroxidase and Arabidopsis thaliana peroxidase A2. It has been suggested that the oxidation site is located on the CWPO-C surface, and homology modeling and chemically modified CWPO-C studies suggest that Tyr74 and/or Tyr177 are possible participants in the catalytic site. The present study clarifies the importance of these Tyr residues for substrate oxidation, using recombinant CWPO-C and recombinant mutant CWPO-C with phenylalanine substitution(s) for tyrosine. Such recombinant proteins, produced in Escherichia coli as inclusion bodies, were successfully refolded to yield the active form, and purified recombinant protein solutions exhibited typical spectra of high-spin ferric protein and displayed H(2) O(2) -dependent oxidation of guaiacol, 2,6-dimethoxyphenol, and syringaldazine. Measurement of peroxidase activity with these guaiacyl and syringyl compounds as reducing substrates indicated that a single mutation, Y74F or Y177F, resulted in substantial loss of oxidation activity (∼ 40-60% and 82%, respectively). Also, over 95% of the oxidation activity was lost with a double mutation, Y74F/Y177F. These results indicated that Tyr74 and Tyr177, rather than the heme pocket, play a central role in the oxidation of these substrates. This is the first report of active residues on an enzyme surface being identified in a plant peroxidase. This study also suggests that sinapyl alcohol incorporation into lignin is performed by a peroxidase that generates Tyr radicals on its surface.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge