English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Botanical Studies 2016-Dec

Identification of drought stress related proteins from 1Sl(1B) chromosome substitution line of wheat variety Chinese Spring.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jiaxing Zhou
Chaoying Ma
Shoumin Zhen
Min Cao
Friedich J Zeller
Sai L K Hsam
Yueming Yan

Keywords

Abstract

BACKGROUND

Wheat, one of the most important crops, has a detrimental effect on both yield and quality under drought stress. As our preliminary experiment showed that the Chinese Spring wheat-Aegilops longissima chromosome substitution line CS-1Sl (1B) had a better drought tolerance than CS, the substitution line CS-1Sl(1B) was used to identify drought stress related proteins by means of a comparative proteome approach in this work. Our present study aimed to explore the gene resources for drought resistance in 1Sl genome.

RESULTS

Our results showed that drought stress induced downregulation of relative water and chlorophyll contents and the upregulation of proline content, and further influencing grain filling shortening and significant decrease of plant height, B-type starch granule numbers, grain number and weight. In total, 25 grain albumin and globulin protein spots were found to be specifically encoded by the 1Sl chromosome. In addition, 17 protein spots respected 13 unique proteins were identified by MALDI-TOF/TOF MS, which were mainly involved in adverse defense and gluten quality. Among them, ascorbate peroxidase, serpin-Z2B and alpha-amylase/trypsin inhibitor were upregulated under drought stress. These proteins play important roles in plant drought defenses through various metabolic pathways.

CONCLUSIONS

Our results indicate that the 1Sl chromosome of Aegilops longissima has potential gene resources that could be useful for improving wheat drought resistance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge