English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Genetics and Molecular Research 2015-Oct

Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H Y Yang
X W Xia
W Fang
Y Fu
M M An
M B Zhou

Keywords

Abstract

Spontaneous leaf color variation in bamboo provides the opportunity to study the mechanisms of leaf color formation and the breeding of ornamental bamboos. Despite the fact that many genes are known to be involved in leaf color variation in model plants, molecular mechanisms governing natural leaf color variation in bamboo have remained obscure. This study aimed to identify the genes responsible for the occurrence of such phenomena in bamboo using the suppression subtractive hybridization (SSH) method between green and albino leaves in Pseudosasa japonica f. A total of 1062 and 1004 differentially expressed transcripts were obtained from the forward and reverse SSH libraries, respectively. Subsequently, 59 differentially expressed unigenes with potential roles in leaf color formation, predicted via computational analysis of their functional relevance, were selected for further analysis using qPCR. Ten genes, involved in photosynthesis, plastid development, and cation signal transduction, showed 2-fold changes in expression levels between green and albino leaves. Further expression pattern analyses of these genes at three developmental stages revealed much lower expression abundance of Lhca1-encoded chlorophyll a/b binding protein in the albino leaves than in the green leaves. Our results suggest that, together with the concatenated negative pressure for subsequent photosynthetic processes, the albino phenotype is at least partly attributable to chloroplast inner membrane damage or to the impairment of photosynthetic pigment accumulation, which results from low Lhca1 expression.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge