English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2016-Sep

Ilex kaushue and Its Bioactive Component 3,5-Dicaffeoylquinic Acid Protected Mice from Lipopolysaccharide-Induced Acute Lung Injury.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yu-Li Chen
Tsong-Long Hwang
Huang-Ping Yu
Jia-You Fang
Kowit Yu Chong
Yao-Wen Chang
Chun-Yu Chen
Hsuan-Wu Yang
Wen-Yi Chang
Pei-Wen Hsieh

Keywords

Abstract

Acute lung injury (ALI) is a severe respiratory disease with high mortality rates worldwide. Recent reports suggest that human neutrophil elastase (HNE) plays a key role in the inflammatory response that is characteristic of ALI, which indicates that the development of HNE inhibitors could be an efficient treatment strategy. In the current study, an enzyme-based screening assay was used to identify effective HNE inhibitors from a number of traditional Chinese medicines (TCMs). Among them, a water extract of Ilex kaushue (IKWE) effectively inhibited HNE activity (IC50, 11.37 ± 1.59 μg/mL). Using bioactivity-guided fractionation, one new compound and 23 known compounds were identified. Compound 6 (identified as 3,5-dicaffeoylquinic acid; 3,5-DCQA) exerted the most potent and selective inhibitory effect on HNE activity (IC50, 1.86 ± 0.06 μM). In a cell-based assay, 3,5-DCQA not only directly reduced superoxide generation and elastase activity but also attenuated the Src family kinase (SRKs)/Vav signaling pathway in N-formyl-L-Met-L-Leu-L-Phe (fMLF)-stimulated human neutrophils. In an animal disease model, both 3,5-DCQA and standardized IKWE protected against lipopolysaccharide-induced ALI in mice, which provides support for their potential as candidates in the development of new therapeutic agents for neutrophilic inflammatory diseases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge