English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell Transplantation 2013

Imaging neural stem cell graft-induced structural repair in stroke.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Marcel M Daadi
Shijun Hu
Jill Klausner
Zongjin Li
Marc Sofilos
Guohua Sun
Joseph C Wu
Gary K Steinberg

Keywords

Abstract

Stem cell therapy ameliorates motor deficits in experimental stroke model. Multimodal molecular imaging enables real-time longitudinal monitoring of infarct location, size, and transplant survival. In the present study, we used magnetic resonance imaging (MRI) and positron emission tomography (PET) to track the infarct evolution,tissue repair, and the fate of grafted cells. We genetically engineered embryonic stem cell-derived neural stem cells (NSCs) with a triple fusion reporter gene to express monomeric red fluorescence protein and herpes simplex virus-truncated thymidine kinase for multimodal molecular imaging and SPIO labeled for MRI. The infarct size as well as fate and function of grafted cells were tracked in real time for 3 months using MRI and PET. We report that grafted NSCs reduced the infarct size in animals with less than 0.1 cm(3) initial infarct in a dose-dependent manner, while larger stroke was not amenable to such beneficial effects. PET imaging revealed increased metabolic activity in grafted animals and visualized functioning grafted cells in vivo. Immunohistopathological analysis demonstrated that, after a 3-month survival period, grafted NSCs dispersed in the stroke-lesioned parenchyma and differentiated into neurons, astrocytes, and oligodendrocytes. Longitudinal multimodal imaging provides insights into time course dose-dependent interactions between NSC grafts and structural changes in infarcted tissue.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge