English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biotechnology 2007-Sep

Impact of adsorbents selection on capture efficiency of cell culture derived human influenza viruses.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lars Opitz
Sylvia Lehmann
Anke Zimmermann
Udo Reichl
Michael W Wolff

Keywords

Abstract

The study aims on affinity matrix selection for a cell culture derived influenza virus capture step in downstream processing. Euonymus europaeus lectin (EEL) was used as an affinity ligand. Human influenza A/Puerto Rico/8/34 (H1N1) virus produced in MDCK cells was chosen as a model strain. The chromatographic separation characteristics of reinforced cellulose membranes and different matrices such as agarose, cellulose, polymer and glass particles with immobilized EEL have been determined. Results obtained were compared to affinity matrices, which are currently used in large-scale vaccine manufacturing. Mass balances for the viral membrane protein hemagglutinin showed that EEL affinity chromatography results in higher recoveries than conventional processes using Cellufine sulphate and heparinized agarose. The most efficient media, a polymer and a cellulose membrane, have been further characterized by protein and host cell DNA measurements. Separations based on the polymer matrix and the cellulose membrane removed contaminating DNA to 0.2 and 1%, respectively. Total protein contents were decreased to 50 and 31%, respectively. The EEL-membrane showed the highest influenza virus binding capacity. These characteristics demonstrate that EEL affinity chromatography is a promising candidate for capturing influenza viruses from MDCK cell culture broths in addition to currently applied chromatographic media.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge