English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 2012-Sep

Impacts of hypoxia-inducible factor-1 knockout in the retinal pigment epithelium on choroidal neovascularization.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mingkai Lin
Yang Hu
Ying Chen
Kevin K Zhou
Ji Jin
Meili Zhu
Yun-Zheng Le
Jian Ge
Jian-Xing Ma

Keywords

Abstract

OBJECTIVE

Hypoxia-inducible factor (HIF)-1 is a key oxygen sensor and is believed to play an important role in neovascularization (NV). The purpose of this study is to determine the role of retinal pigment epithelium (RPE)-derived HIF-1α on ocular NV.

METHODS

Conditional HIF-1α knockout (KO) mice were generated by crossing transgenic mice expressing Cre in the RPE with HIF-1α floxed mice, confirmed by immunohistochemistry, Western blot analysis, and fundus fluorescein angiography. The mice were used for the oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (CNV) models.

RESULTS

HIF-1α levels were significantly decreased in the RPE layer of ocular sections and in primary RPE cells from the HIF-1α KO mice. Under normal conditions, the HIF-1α KO mice exhibited no apparent abnormalities in retinal histology or visual function as shown by light microscopy and electroretinogram recording, respectively. The HIF-1α KO mice with OIR showed no significant difference from the wild-type (WT) mice in retinal levels of HIF-1α and VEGF as well as in the number of preretinal neovascular cells. In the laser-induced CNV model, however, the disruption of HIF-1α in the RPE attenuated the over expression of VEGF and the intercellular adhesion molecule 1 (ICAM-1), and reduced vascular leakage and CNV area.

CONCLUSIONS

RPE-derived HIF-1α plays a key role in CNV, but not in ischemia-induced retinal NV.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge