English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BioMetals 2012-Oct

Impairment of antioxidant defenses as a contributor to arsenite-induced cell transformation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jing Wu
Anna Sowinska
Xi Huang
Catherine B Klein
Edward Pelle
Krystyna Frenkel

Keywords

Abstract

Arsenite (As) causes transformation of human osteogenic sarcoma cells (HOS) when applied continuously at low doses (0.1-0.5 μM) during 8-weeks of exposure. However, the mechanisms by which As transforms human cells are not known. We investigated whether alterations occurred in gene expression and protein levels of antioxidant defense proteins, such as superoxide dismutase 1 (SOD1) and ferritin. In comparison to control HOS cells, 0.1 μM As induced greater cell proliferation and decreased anti-oxidant defenses. The tumor suppressor protein p53 was also decreased at both mRNA and protein levels. Further, pig3 (p53-induced-gene 3), a homolog of NQO1 (NADPH quinone oxidoreductase 1), was also down-regulated after 8 weeks of As challenge. The treatment of HOS cells with dicumarol, a NQO1 inhibitor, caused a dose-dependent decline in p53 protein levels, proving the effect of an antioxidant enzyme on p53 expression and, potentially, down-stream processes. Caffeic acid phenethyl ester, an antioxidant, prevented the As-induced decreases in SOD1, p53, and ferritin mRNA and protein levels. SOD1, p53 and ferritin levels were inversely related to As-induced cell proliferation. Cumulatively, these results strongly suggest that impairment in antioxidant defenses contributes to As-induced human cell transformation and that the p53 pathway is involved in the process.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge