English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Physiology 1989-Jun

Importance of vasoconstriction in lipid mediator-induced pulmonary edema.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Sakai
S W Chang
N F Voelkel

Keywords

Abstract

Lipid mediators of inflammation cause pulmonary edema, yet it is unclear to what degree hemodynamic alterations or increased vascular permeability contribute to lung edema formation. The isolated rat lung preparation was used to examine the effect of leukotriene C4 (LTC4) and platelet-activating factor (PAF) on pulmonary arterial pressure (Ppa), lung microvascular pressure (Pmv), lung wet-to-dry weight ratio, and the 125I-albumin escape index. We first defined the response of the isolated rat lung perfused with protein-free salt solution to hydrodynamic stress by raising the lung outflow pressure. Sustained elevation of the lung outflow pressure less than 5.5 cmH2O (4.01 mmHg) caused a negligible increase in Ppa and wet-to-dry lung weight ratio. Elevation of outflow pressures greater than 7.5 cmH2O (5.4 mmHg) increased the vascular albumin escape index more than the lung wet-to-dry weight ratio. Dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP) inhibited the increase in albumin escape index because of increased lung outflow pressure, suggesting perhaps a pressure-independent microvascular membrane effect of db-cAMP. Both LTC4 (2-micrograms bolus) and PAF (2-2,000 ng/ml perfusate) increased the albumin escape index in association with increases in Ppa and Pmv. Because the increased albumin escape index after LTC4 or PAF injection was largely accounted for by the increased vascular pressures and because db-cAMP and papaverine inhibited the rise in vascular pressures and in the albumin escape index, we conclude that vasoconstriction is an important contributor to LTC4- and PAF-induced edema formation in rat lungs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge