English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2019-May

In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ana Balea
Jose Sanchez-Salvador
M Monte
Noemi Merayo
Carlos Negro
Angeles Blanco

Keywords

Abstract

The recycled paper and board industry needs to improve the quality of their products to meet customer demands. The refining process and strength additives are commonly used to increase mechanical properties. Interfiber bonding can also be improved using cellulose nanofibers (CNF). A circular economy approach in the industrial implementation of CNF can be addressed through the in situ production of CNF using side cellulose streams of the process as raw material, avoiding transportation costs and reducing industrial wastes. Furthermore, CNF fit for use can be produced for specific industrial applications.This study evaluates the feasibility of using two types of recycled fibers, simulating the broke streams of two paper machines producing newsprint and liner for cartonboard, to produce in situ CNF for direct application on the original pulps, old newsprint (ONP), and old corrugated container (OCC), and to reinforce the final products. The CNF were obtained by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-mediated oxidation and homogenization at 600 bar. Handsheets were prepared with disintegrated recycled pulp and different amounts of CNF using a conventional three-component retention system. Results show that 3 wt.% of CNF produced with 10 mmol of NaClO per gram of dry pulp improve tensile index of ONP ~30%. For OCC, the same treatment and CNF dose increase tensile index above 60%. In both cases, CNF cause a deterioration of drainage, but this effect is effectively counteracted by optimising the retention system.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge