English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2019-Oct

In situ study of metabolic response of Arabidopsis thaliana leaves to salt stress by neutral desorption-extractive electrospray ionization mass spectrometry.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dong Wu
Meng Cui
Yingbin Hao
Lihua Liu
Yalian Zhou
Wenjing Wang
Ahui Xue
Konstantin Chingin
Liping Luo

Keywords

Abstract

Abstract:Salt stress is one of the most common factors limiting plant cultivation. In this study, metabolic responses to salt stress in Arabidopsis thaliana (A. thaliana) leaves were analyzed in situ by neutral desorption-extractive electrospray ionization mass spectrometry (ND-EESI-MS) without any sample pretreatment. Metabolic changes of A. thaliana leaves were observed in response to salt stress conditions, including the levels of serine, glutamic acid, arginine, cinnamic acid, ferulic acid, caffeic acid, protocatechuic acid, epicatechin, morin, myricetin, apigravin and β-cotonefuran. The content of serine increased under 50, 100 and 200 mM NaCl salt stress, reaching to the highest level at 200 mM NaCl, but decreased under the maximum concentration of 300 mM NaCl. Similar phenomenon was observed for arginine, glutamic acid, cinnamic acid, caffeic acid, ferulic acid and epicatechin respectively involved in the metabolic pathway of shikimate-phenylpropanoid. Both principal component analysis (PCA) and partial least squares discrimination analysis (PLS-DA) showed that the salt stress treatment groups of the higher concentrations (200 mM and 300 mM) could be well distinguished from those of the lower concentrations (50 mM and 100 mM) and the control. Marker metabolites, like m/z 261 (apigravin) and m/z 305 (β-cotonefuran) were assistantly selected from the fingerprints by variable importance for the projection (VIP). Our results indicated the potential of ND-EESI-MS method for the rapid recognition of metabolic conditions in plant leaves under salt stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge