English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2011-Jan

In vitro Assessment of Sclerotinia homoeocarpa Resistance to Fungicides and Plant Growth Regulators.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chang-Ho Ok
James Popko
Katie Campbell-Nelson
Geunhwa Jung

Keywords

Abstract

Dollar spot (caused by Sclerotinia homoeocarpa) is the most economically important turfgrass disease in North America. This disease is primarily controlled by fungicide applications on golf courses; however, fungicide resistance has been confirmed in three of the four systemic fungicide classes commonly used to control dollar spot. The main objective of this study was to evaluate S. homoeocarpa sensitivity to multiple chemical classes and cross-resistance among active ingredients within the same class; in particular, the association between the fungistatic effect of demethylation inhibitors (DMIs) and plant growth regulators (PGRs). Fifty-eight isolates were selected arbitrarily from four locations in the United States and assayed for in vitro sensitivity to six DMI, two dicarboximide, one carboximide, and one benzimidazole fungicide as well as three type II PGRs. A series of concentrations for each active ingredient was used to determine the mean 50% effective concentration (EC50) values and correlation coefficients were calculated for all active ingredients. The EC50 values of all active ingredients from the DMI class were highly correlated (P < 0.0001) to each other as well as to the one dicarboximide (iprodione) and two PGRs (flurprimidol and paclobutrazol). Isolates resistant to thiophanatemethyl had significantly higher EC50 values than sensitive isolates for all active ingredients assayed except for boscalid. Findings showed that multiple and cross-resistance has developed in S. homoeocarpa and that the two PGRs have a fungistatic effect on this pathogen similar to that of DMI fungicides. The high correlation of in vitro sensitivities among PGRs and DMI fungicides further suggests that PGRs may contribute to the selection of DMI-resistant isolates or facilitate decreased sensitivity to DMI fungicides in the field.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge