English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrine 2016-Nov

In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hang Wang
Jianmin Wang
Hua Qu
Huili Wei
Baolan Ji
Zesong Yang
Jing Wu
Qin He
Yuanyuan Luo
Dan Liu

Keywords

Abstract

We investigated whether 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3) could improve early diabetic nephropathy through the DNA-damage-inducible transcript 4/tuberous sclerosis 2/mammalian target of rapamycin pathway. Rat mesangial cells were cultured in media containing normal glucose or high glucose and were treated with or without 1,25(OH)2D3. Mesangial cells proliferation was measured. Streptozotocin-induced diabetic rats were injected intravenously with a recombinant lentivirus against the rat vitamin D receptor gene. Urinary and serum albumin, fasting plasma glucose, serum triglyceride, total cholesterol, calcium, parathyroid hormone and serum 25-dihydroxy-vitamin D (25(OH)D) levels, mean glomerular volume, glomerular basement membrane thickness and total kidney volume were determined. The expressions of vitamin D receptor, DNA-damage-inducible transcript 4, and mammalian target of rapamycin were measured. 1,25(OH)2D3 inhibited the proliferation of mesangial cells induced by hyperglycemia. 1,25(OH)2D3 also significantly reduced albumin excretion, mean glomerular volume, glomerular basement membrane, and total kidney volume in rats with diabetic nephropathy. The expression of DNA-damage-inducible transcript 4 was elevated by 1,25(OH)2D3 treatment. The phosphorylation of mammalian target of rapamycin was reduced by 1,25(OH)2D3 treatment. Vitamin D receptor gene silencing blocked all of the above results. The current study demonstrates that 1,25(OH)2D3 can effectively inhibit mesangial cells proliferation induced by hyperglycemia, thus suppressing the development of diabetic nephropathy. This study also shows that the nephron-protective effect of 1,25(OH)2D3 occurs partly through the DDIT4/TSC2/mTOR pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge