English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2011-Nov

In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Denise E Dunn
Dong Ning He
Peiying Yang
Mary Johansen
Robert A Newman
Donald C Lo

Keywords

Abstract

The principal active constituent of the botanical drug candidate PBI-05204, a supercritical CO(2) extract of Nerium oleander, is the cardiac glycoside oleandrin. PBI-05204 shows potent anticancer activity and is currently in phase I clinical trial as a treatment for patients with solid tumors. We have previously shown that neriifolin, which is structurally related to oleandrin, provides robust neuroprotection in brain slice and whole animal models of ischemic injury. However, neriifolin itself is not a suitable drug development candidate and the FDA-approved cardiac glycoside digoxin does not cross the blood-brain barrier. We report here that both oleandrin as well as the full PBI-05204 extract can also provide significant neuroprotection to neural tissues damaged by oxygen and glucose deprivation as occurs in ischemic stroke. Critically, we show that the neuroprotective activity of PBI-05204 is maintained for several hours of delay of administration after oxygen and glucose deprivation treatment. We provide evidence that the neuroprotective activity of PBI-05204 is mediated through oleandrin and/or other cardiac glycoside constituents, but that additional, non-cardiac glycoside components of PBI-05204 may also contribute to the observed neuroprotective activity. Finally, we show directly that both oleandrin and the protective activity of PBI-05204 are blood brain barrier penetrant in a novel model for in vivo neuroprotection. Together, these findings suggest clinical potential for PBI-05204 in the treatment of ischemic stroke and prevention of associated neuronal death.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge