English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Pharmacal Research 2007-Aug

In vitro and in vivo studies on the complexes of vinpocetine with hydroxypropyl-beta-cyclodextrin.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shufang Nie
Xiaowen Fan
Ying Peng
Xingang Yang
Chao Wang
Weisan Pan

Keywords

Abstract

The purpose of this study was to evaluate complexes of vinpocetine (VIN), a poorly water-soluble base type drug, with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) in aqueous environment and in solid state, with or without citric acid (CA) as an acidifier of the complexation medium. The apparent stability constant (Kc) calculated by phase solubility was 282 M(-1) and the complexation in solution was structurally characterized by 1H-NMR which showed VIN was likely to fit into the cyclodextrin cavity with its phenyl ring and ethyl ester bond. Solid complexes of VIN and HP-beta-CD were prepared by kneading (KE), co-evaporating (CE) and freeze-drying (FD) methods. Physical mixtures were prepared for comparison. The study in the solid state included the differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and infrared absorption spectroscopy (IR). From these analyses, CE and FD products were found in amorphous state, allowing to the conclusion of strong evidences of inclusion complex formation. However, the dissolution test showed that only VIN/HP-beta-CD+CA complexes by CE and FD method could provide satisfying dissolution behavior (rapid, complete and lasting) when compared to that of VIN/HP-beta-CD complexes. Interestingly, the addition of CA in inclusion complexes could significantly decrease the amount of HP-beta-CD needed to solubilize the same amount of VIN and thereby reducing the formulation bulk. Furthermore, in-vivo study revealed that the bioavailability of VIN after oral administration to rabbits (n=6) was significantly improved by VIN/HP-beta-CD+CA inclusion complex.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge