English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Die Pharmazie 2007-Jun

In vitro anti-oxidative and anti-inflammatory effects of solvent-extracted fractions from Suaeda asparagoides.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jong Min Park
Sung Dae Kim
Whi Min Lee
Jae Youl Cho
Hwa Jin Park
Tae Wan Kim
Nong-Hoon Choe
Sang Keun Kim
Man Hee Rhee

Keywords

Abstract

Suaeda asparagoides Miq. (Chenopodiaceae: S. asparagoides) is a salt-marsh plant that has long been prescribed in traditional Oriental medicine for the treatment of hypertension and hepatitis. In order to elucidate the pharmacological mechanisms of the herb, we conducted an examination of the anti-oxidative and anti-inflammatory properties of solvent-extracts of S. asparagoides. All of the solvent fractions showed potent anti-oxidative effects, as assessed using a radical generation assay system (xanthine oxidase assay) and an electron-donating activity system (DPPH [2,2-diphenyl-l-picrylhydrazyl radical] assay), with IC50 values ranging from 9 to 42 microg/ml. In agreement with this pattern, the total phenolic contents were widely distributed in the various solvent fractions, and ranged from 36.5 to 50.3 mg/g of dry weight. All of the solvent fractions significantly suppressed NO production in RAW264.7 cells induced by lipopolysaccharide (LPS, 0.1 microg/ml) and of the fractions, only the chloroform (CHC) fraction completely blocked the expression of inducible NO synthase (iNOS). Additionally, the hexane (HEX) and CHC fractions suppressed the mRNA expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) and monocyte chemoattractant protein 1 (MCP-1), respectively, in the LPS-stimulated RAW264.7 cells. Therefore, these results suggest that the pharmacological action of S. asparagoides is due to its potent anti-oxidative effects and anti-inflammatory effects, and that therefore it can be applied to other diseases caused by oxidative stress and inflammation, such as cardiovascular diseases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge