English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacology & toxicology 2002-Nov

In vitro cytotoxicity of protocatechuic acid to cultured human cells from oral tissue: involvement in oxidative stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Harvey Babich
Anya Sedletcaia
Bracha Kenigsberg

Keywords

Abstract

Data on the biologic activity of protocatechuic acid are contradictory; some studies have shown that it acts as an antioxidant and suppresses chemical-induced carcinogenesis and others that it induces oxidative stress and promotes tumour formation. The anticarcinogenicity of protocatechuic acid was postulated to be related, in part, to its specific suppression of neoplastic hyperproliferation. To determine whether protocatechuic acid was preferentially antiproliferative to malignant cells, non-malignant and carcinoma cells were exposed for 24 hr to protocatechuic acid (2.5 to 25 mM) and viability was assessed with the neutral red assay. The cell lines were derived from tissues of the human oral cavity, the initial site of exposure upon ingestion of dietary protocatechuic acid, and included normal GN61 gingival fibroblasts, immortalized, non-tumorigenic S-G gingival epithelial cells, and malignant HSG1 cells derived from the salivary gland, HSC-2 cells from the floor of the oral cavity, and CAL27 cells from the tongue. Selective toxicity of protocatechuic acid to malignant cells was not observed. Furthermore, using a total cellular protein determination to quantitate cell growth, no differences in comparative sensitivities of S-G epithelial cells and HSG1 carcinoma cells were noted in a 3 day continuous exposure to 2.5 to 12.5 mM protocatechuic acid and in recovery from a 24 hr exposure to 3 to 15 mM protocatechuic acid. The S-G and HSG1 cells were then used to study the effects of elevated concentrations of protocatechuic acid on oxidative stress. For both cell types, protocatechuic acid induced oxidative stress, presumably through its bioactivation by a tyrosinase pathway. A brief exposure to 25 mM protocatechuic acid lowered the levels of intracellular glutathione and potentiated Fe2+-induced lipid peroxidation of the cells. As determined with the neutral red assay, S-G and HSG1 cells exposed briefly to a non-toxic level (0.5 mM) of the glutathione depleter, 1,3-bis(2-chloroethyl)-N-nitrosourea, were hypersensitive to a subsequent challenge with 10 mM protocatechuic acid and preexposure of the S-G and HSG1 cells to a nontoxic level of protocatechuic acid (2.5 mM) enhanced their sensitivity to a subsequent exposure to tert-butyl hydroperoxide. These findings were consistent with protocatechuic acid, at high levels (> or = 10 mM), acting as an inducer of oxidative stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge