English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2010-Feb

In vitro hepatic biotransformation of aspalathin and nothofagin, dihydrochalcones of rooibos (Aspalathus linearis), and assessment of metabolite antioxidant activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J Debora van der Merwe
Elizabeth Joubert
Marena Manley
Dalene de Beer
Christiaan J Malherbe
Wentzel C A Gelderblom

Keywords

Abstract

Aspalathin (2',3,4,4',6'-pentahydroxy-3'-C-beta-d-glucopyranosyldihydrochalcone) is the major flavonoid present in the South African herbal tea rooibos. In vitro metabolism of aspalathin and a structural analogue nothofagin, lacking the A ring catechol group, was investigated by monitoring the formation of glucuronyl and sulfate conjugates using Aroclor 1254 induced and uninduced rat liver microsomal and cytosolic subcellular fractions. Following glucuronidation of both aspalathin and nothofagin, HPLC-DAD, LC-MS, and LC-MS/MS analyses indicated the presence of two metabolites: one major and one minor. Only one aspalathin metabolite was obtained after sulfation, while no metabolites were observed for nothofagin. Two likely sites of conjugation for aspalathin are 4-OH or 3-OH on the A-ring. For nothofagin, the 4-OH (A-ring) and 6'-OH (B-ring) seem to be involved. The glucuronyl conjugates of aspalathin lack any radical scavenging properties in online postcolumn DPPH radical and ABTS radical cation assays. Deconjugation assays utilizing glucuronidase and sulfatase resulted in the disappearance of the metabolites, with the concomitant formation of the unconjugated form in the case of the glucuronidated product. The balance between conjugated and unconjugated forms of aspalathin could have important implications regarding its role in affecting oxidative status in intra- and extracellular environments in vivo.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge