English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Parasitology Research 2011-Feb

In vitro isolation and characterization of biolarvicidal compounds from micropropagated plants of Spilanthes acmella.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Vibha Pandey
Madhu Chopra
Veena Agrawal

Keywords

Abstract

Spilanthes acmella (Family: Asteraceae) commonly known as "toothache plant" is known to possess strong insecticidal and larvicidal properties. Experiments have been conducted to isolate and characterise the biolarvicidal compounds from the flower head extract of micropropagated S. acmella plants employing various tools like FT-IR, TLC, CC, NMR. FT-IR spectroscopy of the crude hexane extract sample revealed the presence of amide (secondary metabolite) as functional group in S. acmella flower heads. The crude extract was separated into 85 fractions (100 ml each) through silica gel column chromatography using hexane-ethyl acetate mobile phase. All fractions were tested for their larvicidal activity against late III/early IV instar Anopheles stephensi larvae and fraction showing maximum bioefficacy against aforesaid larvae was further resolved into three separate bands on Preparative TLC plate, the respective R (f) values being (a) 0.18, (b) 0.23 and (c) 0.27. Based on Proton NMR spectrum of the eluted compounds and their comparison with published results, three different compounds were identified: N-isobutyl-2,6,8-decatrienamide (compound 1), undeca-2E,7Z,9E-trienoic acid isobutylamide (compound 2) from band a and (2E)-N-(2-methylbutyl)-2-undecene-8,10-diynamide (compound 3) from band b. The amount of the compounds obtained were 338 mg (compounds 1 and 2) and 188.4 mg (compound 3), respectively. This is the first report of biolarvicidal compounds isolation and characterisation from micropropagated S. acmella plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge