English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2019-Apr

In vivo effect of quantified flavonoids-enriched extract of Scutellaria baicalensis root on acute lung injury induced by influenza A virus.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hai-Juan Zhi
Hai-Yan Zhu
Yun-Yi Zhang
Yan Lu
Hong Li
Dao-Feng Chen

Keywords

Abstract

Scutellaria baicalensis root is traditionally used for the treatment of common cold, fever and influenza. Flavonoids are the major chemical components of S. baicalensis root.To evaluate the therapeutic effects and action mechanism of flavonoids-enriched extract from S. baicalensis root (FESR) on acute lung injury (ALI) induced by influenza A virus (IAV) in mice.The anti-influenza, anti-inflammatory and anti-complementary properties of FESR and the main flavonoids were evaluated in vitro. Mice were challenged intranasally with influenza virus H1N1 (A/FM/1/47) 2 h before treatment. FESR (50, 100 and 200 mg/kg) was administrated intragastrically. Baicalin (BG), the most abundant compound in FESR was given as reference control. Survival rates, life spans and lung indexes of IAV-infected mice were measured. Histopathological changes, virus levels, inflammatory markers and complement deposition in lungs were analyzed.Compared with the main compound BG, FESR and lower content aglycones (baicalein, oroxylin A, wogonin and chrysin) in FESR significantly inhibited H1N1 activity in virus-infected Madin-Darby canine kidney (MDCK) cells and markedly decreased nitric oxide (NO) production from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In vitro assays showed that FESR and BG had no anti-complementary activity whereas baicalein, oroxylin A, wogonin and chrysin exhibited obvious anti-complementary activity. Oral administration of FESR effectively protected the IAV-infected mice, increased the survival rate (FESR: 67%; BG: 33%), decreased the lung index (FESR: 0.90; BG: 1.00) and improved the lung morphology in comparing with BG group. FESR efficiently decreased lung virus titers, reduced haemagglutinin (HA) titers and inhibited neuraminidase (NA) activities in lungs of IAV-infected mice. FESR modulated the inflammatory responses by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), and increasing the levels of interferon-γ (IFN-γ) and interleukin-10 (IL-10) in lung tissues. Although showing no anti-complementary activity in vitro, FESR obviously reduced complement deposition and decreased complement activation product level in the lung .FESR has a great potential for the treatment of ALI induced by IAV and the underlying action mechanism might be closely associated with antiviral, anti-inflammatory and anti-complementary properties. Furthermore, FESR resulted in more potent therapeutic effect than BG in the treatment of IAV-induced ALI.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge