English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmaceutical and Biomedical Analysis 2019-Jul

In vivo metabolic profiles of Bu-Zhong-Yi-Qi-Tang, a famous traditional Chinese medicine prescription, in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Liufang Hu
Zhihong Yao
Zifei Qin
Liyin Liu
Xiaojun Song
Yi Dai
Hiroaki Kiyohara
Haruki Yamada
Xinsheng Yao

Keywords

Abstract

Bu-Zhong-Yi-Qi-Tang (BZYQT), a famous traditional Chinese medicine prescription (TCMP), has been extensively used for conditioning sub-health status and diseases caused by spleen-qi deficiency in China for over 700 years. BZYQT is prevalent not only in China, but also in Japan and South Korea for the clinical treatment of chronic diseases, such as fatigue, tuberculosis and loss of appetite after surgery. However, due to a lack of research on the holistic metabolism of BZYQT, the in vivo bioactive components of BZYQT remain unclear, hindering further study of its in vivo mechanism of action and quality control. In the present study, a four-step integrated strategy based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) was established to systematically screen the in vivo xenobiotics of BZYQT. Ultimately, a total of 162 xenobiotics (59 prototypes and 103 metabolites) were identified or tentatively characterized, including 48 in plasma, 147 in urine and 58 in feces, while the in vivo metabolic profile of atractylenolide III (a major component of BZYQT) was elucidated for the first time. The xenobiotics of BZYQT mainly included flavonoids from Astragali Radix, Glycyrrhizae Radix et Rhizoma and Citrus reticulatae Pericarpium; lactones from Angelicae Sinensis Radix and Atractylodis Macrocephalae Rhizoma; and triterpenoid saponins from Cimicifugae Rhizoma. After oral administration, BZYQT-related components underwent diverse metabolic pathways. Among them, flavonoids mainly underwent glucuronidation, sulfation and demethylation, while lactones mainly underwent hydroxylation and acetylcysteine conjugation, and deglycosylation was the major metabolic reaction of saponins. Our investigation gives a comprehensive analysis of the metabolic characteristics of BZYQT and will provide an important basis for further studying the pharmacokinetics of BZYQT to explore its in vivo disposal features and discover its in vivo bioactive components.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge