English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Drug Metabolism and Pharmacokinetics 2017-Apr

Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi that Mimic the Human Blood Metabolism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Camila Raquel Paludo
Eduardo Afonso da Silva-Junior
Eliane de Oliveira Silva
Ricardo Vessecchi
Norberto Peporine Lopes
Mônica Tallarico Pupo
Flavio da Silva Emery
Natália Dos Santos Gonçalves
Raquel Alves Dos Santos
Niege Araçari Jacometti Cardoso Furtado

Keywords

Abstract

OBJECTIVE

β-Lapachone is a drug candidate in phase II clinical trials for treatment of solid tumors. The therapeutic efficacy of β-lapachone is closely related to its metabolism, since this o-naphthoquinone produces cytotoxic effect after intracellular bioreduction by reactive oxygen species formation. The aim of this study was to produce β-lapachone human blood phase I metabolites to evaluate their cytotoxic activities.

METHODS

The biotransformation of β-lapachone was performed using Mucor rouxii NRRL 1894 and Papulaspora immersa SS13. The metabolites were isolated and their chemical structures determined from spectrometric and spectroscopic data. Cell cytotoxicity assays were carried out with β-lapachone and its metabolites using the neoplastic cell line SKBR-3 derived from human breast cancer and normal human fibroblast cell line GM07492-A.

RESULTS

Microbial transformation of β-lapachone by filamentous fungi resulted in the production of five metabolites identical to those found during human blood metabolism, a novel metabolite and a product stated before only in a synthetic procedure. The analysis of the results showed that β-lapachone metabolites were not cytotoxic for the neoplastic cell line SKBR-3 derived from human breast cancer and the normal human fibroblast cell line GM07492-A. The cytotoxic activity assay against the neoplastic cell line SKBR-3 revealed that the lowest half-maximal inhibitory concentration (IC50) values of these β-lapachone metabolites were 33- to 52-fold greater than IC50 values of β-lapachone.

CONCLUSIONS

The cytotoxic activity of β-lapachone in vivo may be reduced due to its swift conversion in blood.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge