English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 1985-Jan

Increased Vacuolar ATPase Activity Correlated With CAM Induction in Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
I Struve
A Weber
U Lüttge
E Ball
J A Smith

Keywords

Abstract

Vacuolar ATPase activities were determined by differential inhibition of homogenates of isolated protoplasts (using the inhibitors molybdate for acid phosphatases, vanadate for plasmalemma ATPase, azide for mitochondrial ATPase, and phlorizin for chloroplast ATPase) and in preparations of isolated vacuoles of Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb. Crassulacean acid metabolism (CAM) was induced in M. crystallinum by NaCl-salinity and in K. blossfeldiana by short-day treatments. Vacuolar ATPase activities increased several-fold during the transition from C(3) photosynthesis to CAM. The increase was quantitatively related to the rates of nocturnal maliacid accumulation in CAM assuming a stoichiometry of 2 H(+) pumped into the vacuole for 1 ATP hydrolyzed and 1 malate(2-) anion transported by secondary flux coupling. In M. crystallinum increased vacuolar ATPase activities were truly correlated with the degree of CAM expressed and not with NaCl accumulation due to the salinity treatment. Some properties of the vacuolar A TPase of M. crystallinum characterized in vacuole preparations were a pH-optimum near 8.0, an apparent K(m) (MgATP(2-)) of 0.20 to 0.29 mM, and an approximately 70 % inhibition by 50 mM nitrate.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge