English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Botany 2000-Jul

Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R Itai
K Suzuki
H Yamaguchi
H Nakanishi
N K Nishizawa
E Yoshimura
S Mori

Keywords

Abstract

To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge