English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Journal of Physiology 2006-Oct

Inducible nitric oxide synthase expression and plasma bilirubin changes in rats under intermittent hypoxia treatment.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chau-Heng Chien
Chii-Min Hwu
Teh-Ling Liou
Zih-Ling Huang
Amy Ru Shen
Victoria Hui Yang
Chia-Wei Lee
Eileen Jea Chien

Keywords

Abstract

It has been reported that intermittent hypoxia treatment prevents oxidative injuries to the brain and protects the heart against ischemia-reperfusion injury. Both anti-oxidative defensive systems and prevention of free intracellular calcium overload might be the result of intermittent hypoxia. Thus, the purpose of this study was to explore the effects of intermittent hypoxia (8 h at 12 % O2 per day) for 0, 7 or 14 days on inducible nitric oxide synthase (iNOS) expression in the spleen and on splenic calcium response to the mitogen phytohemagglutinin (PHA). The results demonstrated that administration of intermittent hypoxia for 7 days caused severe hemolysis of erythrocytes in the spleen and the hemolytic condition was ameliorated by intermittent hypoxia for 14 days. However, a significant decline in splenic weight and an increase in plasma total bilirubin levels appeared in rats after hypoxia for 14 days. No calcium response to PHA was observed in splenocytes obtained from rats after intermittent hypoxia for 7 days. After intermittent hypoxia for 14 days, the calcium response to PHA was restored to the level of the controls. Intermittent hypoxia for 7 days was able to induce higher iNOS expression in splenic tissues than hypoxia for 14 days. These results suggested that intermittent hypoxia for 14 days appeared to involve acclimatization that protects the rats from oxidative injury through less hemolysis and iNOS expression in splenic tissues and by the presence of more bilirubin in the plasma. The increase in plasma total bilirubin levels might be the cause of induced adaptation to chronic intermittent hypoxia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge