English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2002-Sep

Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Toshiyuki Takada
Tetsuya Noguchi
Kenjiro Inagaki
Tetsuya Hosooka
Kaoru Fukunaga
Takuji Yamao
Wataru Ogawa
Takashi Matozaki
Masato Kasuga

Keywords

Abstract

Stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1), a transmembrane-type protein-tyrosine phosphatase, is thought to inhibit integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. Adenovirus-mediated overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of this enzyme, has now been shown to induce apoptosis in NIH 3T3 fibroblasts. This effect of SAP-1 was dependent on cellular caspase activities and was preceded by inactivation of two serine-threonine protein kinases, Akt and integrin-linked kinase (ILK), both of which function downstream of phosphoinositide (PI) 3-kinase to promote cell survival. Coexpression of constitutively active forms of PI 3-kinase or Akt (which fully restored Akt and ILK activities) resulted in partial inhibition of SAP-1-induced cell death. Furthermore, expression of a dominant negative mutant of PI 3-kinase did not induce cell death as efficiently as did SAP-1, although this mutant inhibited Akt and ILK activities more effectively than did SAP-1. Overexpression of SAP-1 had no substantial effect on Ras activity. These results suggest that SAP-1 induces apoptotic cell death by at least two distinct mechanisms: inhibition of cell survival signaling mediated by PI 3-kinase, Akt, and ILK and activation of a caspase-dependent proapoptotic pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge