English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Physics 2011-Jan

Inertial and bias effects in the rotational brownian motion of rodlike molecules in a uniaxial potential.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yuri P Kalmykov
Sergey V Titov
William T Coffey

Keywords

Abstract

Inertial effects in the rotational brownian motion in space of a rigid dipolar rotator (needle) in a uniaxial potential biased by an external field giving rise to asymmetry are treated via the infinite hierarchy of differential-recurrence relations for the statistical moments (orientational correlation functions) obtained by averaging the Euler-Langevin equation over its realizations in phase space. The solutions of this infinite hierarchy for the dipole correlation function and its characteristic times are obtained using matrix continued fractions showing that the model simultaneously predicts both slow overbarrier (or interwell) relaxation at low frequencies accompanied by intermediate frequency Debye relaxation due to fast near-degenerate motion in the wells of the potential (intrawell relaxation) as well as the high frequency resonance (Poley) absorption due to librations of the dipole moments. It is further shown that the escape rate of a brownian particle from a potential well as extended to the Kramers turnover problem via the depopulation factor yields a close approximation to the longest (overbarrier) relaxation time of the system. For zero and small values of the bias field parameter h, both the dipole moment correlation time and the longest relaxation time have Arrhenius behavior (exponential increase with increasing barrier height). While at values of h in excess of a critical value however far less than that required to achieve nucleation, the Arrhenius behavior of the correlation time disappears.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge