English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1966-Mar

Influence of Iron Chlorosis on Pigment and Protein Metabolism in Leaves of Nicotiana tabacum L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A S Shetty
G W Miller

Keywords

Abstract

Experiments were conducted on Nicotiana tabacum, L. to study the relation in the grana among chlorophylls, carotenoids, and proteins. The effect of iron chlorosis on protein and pigment synthesis was studied at different stages of chlorosis using glycine-U-C(14). Pigments were separated by thin layer chromatography.Chlorophyll a, chlorophyll b, carotenoid, and protein contents of chloroplasts from chlorotic tissue were less than those of normal tissues. A 25% decrease in protein labeling and a 45% decrease in chlorophyll labeling was noted in deficient tissue compared to normal tissue even before chlorosis was perceptible. Both normal and iron deficient leaf discs which received iron in the incubation medium incorporated higher amounts of radioactive glycine into chlorophyll a and chlorophyll b at all stages of development than their respective counterparts not supplied with iron in the incubation medium. The presence of iron in the incubation medium reduced the amount of glycine incorporated into carotenes and xanthophylls, except where the tissue was severely chlorotic. This may be attributed to active competition for glycine between the iron-dependent- (chlorophyll) and iron-independent-(carotenoid) biosynthetic pathways. Incorporation of glycine into chloroplast pigments was lowest at severe chlorosis, probably due to a reduction in the overall enzyme activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge