English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mycorrhiza 2011-Jul

Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Min Sheng
Ming Tang
Fengfeng Zhang
Yanhui Huang

Keywords

Abstract

A pot experiment was conducted to examine the effect of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on plant biomass and organic solute accumulation in maize leaves. Maize plants were grown in sand and soil mixture with three NaCl levels (0, 0.5, and 1.0 g kg(-1) dry substrate) for 55 days, after 15 days of establishment under non-saline conditions. At all salinity levels, mycorrhizal plants had higher biomass and higher accumulation of organic solutes in leaves, which were dominated by soluble sugars, reducing sugars, soluble protein, and organic acids in both mycorrhizal and non-mycorrhizal plants. The relative abundance of free amino acids and proline in total organic solutes was lower in mycorrhizal than in non-mycorrhizal plants, while that of reducing sugars was higher. In addition, the AM symbiosis raised the concentrations of soluble sugars, reducing sugars, soluble protein, total organic acids, oxalic acid, fumaric acid, acetic acid, malic acid, and citric acid and decreased the concentrations of total free amino acids, proline, formic acid, and succinic acid in maize leaves. In mycorrhizal plants, the dominant organic acid was oxalic acid, while in non-mycorrhizal plants, the dominant organic acid was succinic acid. All the results presented here indicate that the accumulation of organic solutes in leaves is a specific physiological response of maize plants to the AM symbiosis, which could mitigate the negative impact of soil salinity on plant productivity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge