English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Carbohydrate Polymers 2013-Mar

Influence of lysophosphatidylcholine on the gelation of diluted wheat starch suspensions.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Ahmadi-Abhari
A J J Woortman
R J Hamer
A A C M Oudhuis
K Loos

Keywords

Abstract

Starch is an omnipresent constituent which is used for its nutritional and structuring properties. Recently concerns have been raised since starch is a source of readily available glucose which is tightly correlated with diabetes type II and obesity. For this reason, the possibilities for modulating the digestibility of starch while preserving its functional properties were investigated; therefore the focus of this paper is on starch gelatinization and the effect of lysophosphatidylcholine (LPC) on the structuring properties of wheat starch. The effect of LPC on thermal properties and viscosity behavior of starch suspensions was studied using DSC and RVA, respectively. The influence on granular structure was observed by light microscopy. The RVA profile demonstrated no viscosity increase at high LPC concentrations which proves intact granular structure after gelatinization. LPC in intermediate concentrations resulted in a notable delay of pasting; however the peak and end viscosities were influenced as well. Lower LPC concentrations demonstrated a higher peak viscosity as compared with pure starch suspensions. DSC results imply that inclusion complexes of amylose-LPC might be formed during pasting time. Since the viscosity profiles are changed by LPC addition, swelling power and solubility of starch granules are influenced as well. LPC hinders swelling power and solubility of starch granules which are stimulated by heating.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge