English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Optics Express 2019-Oct

Influence of photoluminophore-modified agro textile spunbond on growth and photosynthesis of cabbage and lettuce plants.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Robert Khramov
Vladimir Kreslavski
Evgeniya Svidchenko
Nikolay Surin
Anatoly Kosobryukhov

Keywords

Abstract

Light-converting polypropylene spunbond was first used in the study of the key physiological parameters of plants. A comparative study of the functioning of the photosynthetic apparatus and the dynamics of growth in late cabbage plants (Olga variety) and leaf lettuce (Emerald variety) was conducted using the ordinary nonwoven polypropylene fabric (spunbond) (density 30 g·m-2) and the spunbond containing a photoluminophore (PL) (1.6% yttrium oxysulfide doped with europium). The plants were grown in a glass greenhouse without spunbond and under the spunbond containing and not containing the PL that transforms a part of UV-radiation into red light radiation. The use of the spunbond led to a decrease in the rate of photosynthesis, activity of the photosystem 2, and the accumulation of plant biomass and to an increase in the stomatal conductance. By contrast to unmodified spunbond, the application of the spunbond containing the PL led to an increase in the rate of photosynthesis, the water-use efficiency (WUE), and the accumulation of the total biomass of plants by 30-50% but to a decrease in the transpiration rate and the stomatal conductance. It is assumed that the positive effect of the PL is associated with an increase in the fraction of fluorescent red light, which enhances photosynthetic activity and accelerates plant growth.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge