English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Urology 2016-Apr

Inhibition of HIF Reduces Bladder Hypertrophy and Improves Bladder Function in Murine Model of Partial Bladder Outlet Obstruction.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Nao Iguchi
Anna P Malykhina
Duncan T Wilcox

Keywords

Abstract

OBJECTIVE

Posterior urethral valves are the most common cause of partial bladder outlet obstruction in the pediatric population. However, to our knowledge the etiology and the detailed mechanisms underlying pathological changes in the bladder following partial bladder outlet obstruction remain to be elucidated. Recent findings suggest that hypoxia and associated up-regulation of HIFs (hypoxia-inducible factors) have a key role in partial bladder outlet obstruction induced pathology in the bladder. We examined the effects of pharmacological inhibition of HIF pathways by 17-DMAG (17-(dimethylaminoethylamino)-17-demethoxygeldanamycin) in pathophysiological phenotypes after partial bladder outlet obstruction.

METHODS

Partial bladder outlet obstruction was surgically created in male C57BL/6J mice. The animals received oral administration of 17-DMAG or vehicle daily starting from the initiation of obstruction up to 5 days. Sham operated mice served as controls. Bladders were harvested from each group 2, 4 and 7 days postoperatively, and analyzed for histological and biochemical changes. Bladder function was assessed by in vitro muscle contractility recordings.

RESULTS

Partial bladder outlet obstruction caused a significant increase in the bladder mass accompanying enhanced collagen deposition in the bladder wall while 17-DMAG treatment suppressed those increases. Treatment with 17-DMAG attenuated the degree of up-regulation of HIFs and their target genes involving the development of tissue fibrosis in obstructed bladders. Treatment with 17-DMAG improved the decreased responses of obstructed bladder strips to electrical field stimulation and KCl.

CONCLUSIONS

In vivo 17-DMAG treatment decreased partial bladder outlet obstruction induced pathophysiological changes in the bladder. HIF pathway inhibition has a potential clinical implication for the development of novel pharmacological therapies to treat bladder pathology associated with partial bladder outlet obstruction.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge