English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2015-May

Inhibition of Human Neutrophil Responses by the Essential Oil of Artemisia kotuchovii and Its Constituents.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Igor A Schepetkin
Svetlana V Kushnarenko
Gulmira Özek
Liliya N Kirpotina
Gulzhakhan A Utegenova
Yuriy A Kotukhov
Alevtina N Danilova
Temel Özek
K Hüsnü Can Başer
Mark T Quinn

Keywords

Abstract

Essential oils were obtained by hydrodistillation of the flowers+leaves and stems of Artemisia kotuchovii Kupr. (AKEO(f+l) and AKEO(stm), respectively) and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The primary components of the oils were estragole, (E)- and (Z)-β-ocimenes, methyleugenol, limonene, spathulenol, β-pinene, myrcene, and (E)-methyl cinnamate. Seventy-four constituents were present at concentrations from 0.1 to 1.0%, and 34 compounds were identified in trace (<0.1%) amounts in one or both plant components. Screening of the essential oils for biological activity showed that AKEO(stm), but not AKEOf+l, inhibited N-formyl-Met-Leu-Phe (fMLF)-stimulated Ca(2+) flux and chemotaxis and phorbol-12-myristate-13-acetate (PMA)-induced reactive oxygen species (ROS) production in human neutrophils. Selected pure constituents, representing >96% of the AKEO(stm) composition, were also tested in human neutrophils and HL-60 cells transfected with N-formyl peptide receptor 1 (FPR1). One component, 6-methyl-3,5-heptadien-2-one (MHDO), inhibited fMLF- and interleukin 8 (IL-8)-stimulated Ca(2+) flux, fMLF-induced chemotaxis, and PMA-induced ROS production in human neutrophils. MHDO also inhibited fMLF-induced Ca(2+) flux in FPR1-HL60 cells. These results suggest that MHDO may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration and ROS production.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge