English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology Letters 2017-Aug

Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hongjin Chen
Xi Yang
Kongqin Lu
Chun Lu
Yunjie Zhao
Suqing Zheng
Jieli Li
Zhangjian Huang
Yi Huang
Yali Zhang

Keywords

Abstract

Hyperglycemia-induced inflammation and fibrosis have important roles in the pathogenesis of diabetic nephropathy and cardiomyopathy. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be an effective approach to new avenue for treating diabetic complications. J17, a molecule with structural similarities to curcumin, exhibited good anti-inflammatory activities by inhibiting LPS-induced inflammatory response in macrophages. However, its ability to alleviate hyperglycemia-induced injury via its anti-inflammatory actions remained unclear. Thus, we reported that J17 exerts significant inhibitory effects on hyperglycemia-induced inflammation and fibrosis in NRK-52E cells, H9C2 cells and a streptozotocin-induced diabetic mouse model. We also found that the anti-inflammatory and anti-fibrosis activities of J17 are associated with the inhibition of the P38 and AKT signal pathway, respectively. In vivo oral administration of J17 suppressed hyperglycemia-induced inflammation, hypertrophy and fibrosis, thereby reducing key markers for renal and cardiac dysfunction and improving in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. The results of this study indicated that J17 can be potentially used as a cardio- and reno-protective agent and that targeting the P38 and AKT pathways may be an effective therapeutic strategy for diabetic complications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge