English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2016-Sep

Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rogelio Carrillo-González
Miriam Araceli Martínez-Gómez
Ma Del Carmen A González-Chávez
José Carlos Mendoza Hernández

Keywords

Abstract

The Citadel, part of the pre-Hispanic city of Teotihuacan and listed as a World Heritage Site, harbors irreplaceable archaeological walls and murals. This city was abandoned by the 7th century and its potential deterioration represents a noteworthy loss of the world's cultural heritage. This research consisted of isolation and identification of bacteria and fungi contributing to this deterioration from walls of a pre-Hispanic city. In addition, silver nanoparticles (AgNP) produced, using a green synthesis method, were tested as potential inhibitors of microbes. AgNP of different sizes and concentrations were tested using in situ assays. Leaf aqueous extracts from two plants species (Foeniculum vulgare and Tecoma stans) and two extraction procedures were used in the NP synthesis. The potential of AgNP as preventive/corrective treatments to protect stucco materials from biodeterioration, as well as the microbial inhibition on three stone materials (stucco, basalt and calcite) was analyzed. Twenty-three bacterial species belonging to eight genera and fourteen fungal species belonging to seven genera were isolated from colored stains, patinas and biofilms produced on the surfaces of archaeological walls from the pre-Hispanic city, Teotihuacan. AgNP from F. vulgare were more effective for in vitro microbial growth inhibition than those from T. stans. Bacteria were less sensitive to AgNP than fungi; however, sensitivity mainly depended on the microbial strain and the plant extract used to prepare AgNP. The use of AgNP as a preventive or corrective treatment to decrease microbial colonization in three kinds of stone used in historical walls was successful. Calcite was more colonized by Alternaria alternata, but less by Pectobacterium carotovorum. This is the first study at different scales (in vitro and tests on different stone types) of inhibition of biodeterioration-causing microorganisms isolated from an archaeological site by green synthesized AgNP.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge