English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmaceutical Sciences 1988-Feb

Inhibition of nucleic acid synthesis in P-388 lymphocytic leukemia tumor cells by helenalin and bis(helenalinyl)malonate in vivo.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
W L Williams
I H Hall
A A Grippo
C B Oswald
K H Lee
D J Holbrook
S G Chaney

Keywords

Abstract

Although the parent sesquiterpene lactone, helenalin, and its derivative, bis(helenalinyl)malonate, are structurally related chemically, they demonstrate differences in their antineoplastic activity, with bis(helenalinyl)malonate being much more active against P-388 lymphocytic leukemia cell growth (T/C% = 261) compared with helenalin (T/C% = 162). Previous studies have shown that both agents strongly inhibit protein synthesis in vivo by greater than 70% after 3 d of administration and in vitro by 50% at a 100 microM concentration of drug. This inhibition of protein synthesis of P-388 cells may be partially responsible for the cytotoxicity of the drug. These agents also inhibit nucleic acid synthesis in vivo, with DNA synthesis being suppressed by greater than 90% after 2 d of administration of drugs at the therapeutic dose. Of the sulfhydryl-bearing enzymes involved in nucleic acid synthesis that were assayed, only the activities of inosine-5'-monophosphate (IMP) dehydrogenase and the ribonucleotide reductase complex were inhibited by greater than 50% by these sulfhydryl-reactive drugs, which would account for the observed inhibition of nucleic acid synthesis in the P-388 cells. The inhibition of the activities of these enzymes lowered the deoxyribonucleotide levels in P-388 cells, which would explain the overall suppression of DNA synthesis by the sesquiterpene lactones.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge