English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2014-Sep

Inhibition of tumor proliferation associated with cell cycle arrest caused by extract and fraction from Casearia sylvestris (Salicaceae).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Karina Bettega Felipe
Maicon Roberto Kviecinski
Fabiana Ourique da Silva
Nádia Falcão Bücker
Mirelle Sinfroni Farias
Luiza Sheyla Evenni Porfirio Will Castro
Valdelúcia Maria Alves de Souza Grinevicius
Nadia Sandrini Motta
João Francisco Gomes Correia
Maria Helena Rossi

Keywords

Abstract

BACKGROUND

Casearia sylvestris is a tree found in tropical America. In Brazil it is known mainly as Guaçatonga. Literature reports suggest that the leaves and other plant parts have been used by indigenous populations from South America in preparations, mainly aqueous or hydroethanolic macerations or decoctions, most times taken orally for the primary treatment of several diseases, including cancer.

OBJECTIVE

This article reports the results of an investigation about the antiproliferative effects of Casearia sylvestris on tumor cells in vitro and in vivo.

METHODS

Aqueous ethanolic maceration and column chromatography were done to obtain a crude aqueous ethanolic extract (CAE) and a chloroform fraction (f-CHCl3). The human breast cancer cell line MCF-7 was used in culture. In vitro, non-cytotoxic concentrations were determined by MTT assay and the antiproliferative effect was assessed by the colony forming unit assay using non-cytotoxic concentrations. Effects on the cell cycle were observed through flow cytometry using a propidium iodide kit. Casearin C was identified in f-CHCl3 by chromatography and H(1) nuclear magnetic resonance. The effect on some key proteins of DNA damage (phosphorylation on the histone H2AX) and cell cycle control (p53, p16, cdk2) was evaluated through immunoblot. Antiproliferative effects in vivo were measured in tumor tissue from Ehrlich ascites-bearing mice through the (3)H-thymidine uptake assay and the trypan blue exclusion method.

RESULTS

In vitro, EC50 values found at 24 h on MCF-7 cells were 141 µg/mL for CAE and 66 µg/mL for f-CHCl3. Inhibition on proliferation was recorded at concentrations as low as 4 µg/mL in the case of the f-CHCl3 (up to 40%) and up to 50% when CAE was added at 9 µg/mL. The cell cycle arrest was demonstrated by the reduction in terms of number of cells in phases G2/M and S, up to 38.9% and 51.9% when cells were treated with CAE, and 53.9% and 66.2%, respectively, when cells were treated with f-CHCl3. The number of cells in G1 was increased when the cells were treated with CAE (21.4%) or f-CHCl3 (27.8%). Key proteins of cell cycle control were affected. The treatments caused activation of p53, p16 and DNA damage found by the appearance of bands corresponding to γ-H2AX. The treatments caused inhibition of cdk2. CAE and particularly f-CHCl3 caused significant inhibition on tumor growth in mice (40% and 60%, respectively). Uptake of (3)H-thymidine, thus proliferation was reduced in tumor cells from mice treated with CAE (>30%) or f-CHCl3 (up to 50%) compared to cells from control animals. Data from the trypan blue assay indicating a lower number of tumor cells in treated animals. From the overall, data from this study are in line with the traditional claims for the antitumor effect of Casearia sylvestris.

CONCLUSIONS

This investigation suggests that whether the extracts from Casearia sylvestris are cytotoxic at high concentrations, lower concentrations have antiproliferative effect and could be useful to complement conventional cytotoxic chemotherapy, and should be evaluated further.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge