English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Scientific Reports 2017-Oct

Inhibitory effect and mechanism of Tagetes erecta L. fungicide on Fusarium oxysporum f. sp. niveum.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ruochen Du
Jiandong Liu
Panpan Sun
Hongquan Li
Jinsheng Wang

Keywords

Abstract

Botanical fungicides comprise attractive alternatives to chemical fungicides because of their environmental compatibility. Flavonoids extracted from Tagetes erecta L. have an inhibitory effect on fusarium wilt in watermelons caused by Fusarium oxysporum f. sp. niveum (FON). In this study, we synthesized one of these flavonoids, 2,5-dicyclopentylidene cyclopentanone (Tagetes erecta L. fungicide (TEF)) and assessed its activity against FON. In vitro, TEF inhibited FON growth and killed FON cells directly. TEF also affected FON cell physiology and mycelial structure. In watermelon plants with fusarium wilt, TEF protected the leaf cell structure and improved the germination rate of infected seeds while increasing overall plant resistance. A TEF-resistant mutant (FONM) was created by chemical mutagenesis. FON and FONM were analysed using iTRAQ and RNA-Seq, which identified 422 differentially expressed proteins and 7817 differentially expressed mRNAs in the proteome and transcriptome, respectively. The FONM mutations caused changes in the cell membrane and cell wall, which may constitute the site of action of TEF. Together, these results demonstrate that TEF could effectively control the watermelon fusarium wilt caused by FON, possibly through the inhibition of sterol biosynthesis. The data presented here suggest that TEF represents a new potential botanical anti-fungal drug.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge