English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurogastroenterology and Motility 2011-Aug

Inhibitory effects of bromelain, a cysteine protease derived from pineapple stem (Ananas comosus), on intestinal motility in mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
F Borrelli
R Capasso
B Severino
F Fiorino
G Aviello
G De Rosa
M Mazzella
B Romano
F Capasso
I Fasolino

Keywords

Abstract

BACKGROUND

Bromelain (BR) is a cysteine protease with inhibitory effects on intestinal secretion and inflammation. However, its effects on intestinal motility are largely unexplored. Thus, we investigated the effect of this plant-derived compound on intestinal contractility and transit in mice.

METHODS

Contractility in vitro was evaluated by stimulating the mouse isolated ileum, in an organ bath, with acetylcholine, barium chloride, or electrical field stimulation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine. Transit was also evaluated in pathophysiologic states induced by the pro-inflammatory compound croton oil or by the diabetogenic agent streptozotocin.

RESULTS

Bromelain inhibited the contractions induced by different spasmogenic compounds in the mouse ileum with similar potency. The antispasmodic effect was reduced or counteracted by the proteolytic enzyme inhibitor, gabexate (15 × 10(-6) mol L(-1) ), protease-activated receptor-2 (PAR-2) antagonist, N(1) -3-methylbutyryl-N(4) -6-aminohexanoyl-piperazine (10(-4) mol L(-1) ), phospholipase C (PLC) inhibitor, neomycin (3 × 10(-3) mol L(-1) ), and phosphodiesterase 4 (PDE4) inhibitor, rolipram (10(-6) mol L(-1) ). In vivo, BR preferentially inhibited motility in pathophysiologic states in a PAR-2-antagonist-sensitive manner.

CONCLUSIONS

Our data suggest that BR inhibits intestinal motility - preferentially in pathophysiologic conditions - with a mechanism possibly involving membrane PAR-2 and PLC and PDE4 as intracellular signals. Bromelain could be a lead compound for the development of new drugs, able to normalize the intestinal motility in inflammation and diabetes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge