English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2011-Jun

Inhibitory effects of kaurenoic acid from Aralia continentalis on LPS-induced inflammatory response in RAW264.7 macrophages.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ran Joo Choi
Eun Myoung Shin
Hyun Ah Jung
Jae Sue Choi
Yeong Shik Kim

Keywords

Abstract

This study investigates the anti-inflammatory effects of a diterpenoid, kaurenoic acid, isolated from the root of Aralia continentalis (Araliaceae). To determine its anti-inflammatory effects, LPS-induced RAW264.7 macrophages were treated with different concentrations of kaurenoic acid and carrageenan-induced paw edema mice model was used in vivo. Kaurenoic acid (ent-kaur-16-en-19-oic acid) dose-dependently inhibited nitric oxide (NO) production, prostaglandin E(2) (PGE(2)) release, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression at micromolar concentrations in LPS-induced RAW264.7 macrophages with IC(50) (the half maximal inhibitory concentration) values of 51.73 (±2.42) μM and 106.09 (±0.27) μM in NO production and PGE(2) release, respectively. Kaurenoic acid also dose-dependently inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) and it almost abolished NF-κB DNA binding affinity at 100μM. Furthermore, the in vivo anti-inflammatory effect of kaurenoic acid was examined in a carrageenan-induced paw edema model. Eight ICR mice in each group were injected with carrageenan and observed hourly, compared with the control group. Kaurenoic acid dose-dependently reduced paw swelling up to 34.4% at 5h after induction, demonstrating inhibition in an acute inflammation model. Taken together, our data suggest that kaurenoic acid, a major diterpenoid from the root of A. continentalis shows anti-inflammatory activity and the inhibition of iNOS and COX-2 expression might be one of the mechanisms responsible for its anti-inflammatory properties.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge