English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Diabetes 2006-Dec

Insulin-mediated phosphorylation of the proline-rich Akt substrate PRAS40 is impaired in insulin target tissues of high-fat diet-fed rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Emmani B M Nascimento
Mariann Fodor
Gerard C M van der Zon
Ingrid M Jazet
A Edo Meinders
Peter J Voshol
Ronald Vlasblom
Bart Baan
Jürgen Eckel
J Antonie Maassen

Keywords

Abstract

Clinical insulin resistance is associated with decreased activation of phosphatidylinositol 3'-kinase (PI3K) and its downstream substrate protein kinase B (PKB)/Akt. However, its physiological protein substrates remain poorly characterized. In the present study, the effect of in vivo insulin action on phosphorylation of the PKB/Akt substrate 40 (PRAS40) was examined. In rat and mice, insulin stimulated PRAS40-Thr246 phosphorylation in skeletal and cardiac muscle, the liver, and adipose tissue in vivo. Physiological hyperinsulinemia increased PRAS40-Thr246 phosphorylation in human skeletal muscle biopsies. In cultured cell lines, insulin-mediated PRAS40 phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002. Immunohistochemical and immunofluorescence studies showed that phosphorylated PRAS40 is predominantly localized to the nucleus. Finally, in rats fed a high-fat diet (HFD), phosphorylation of PRAS40 was markedly reduced compared with low-fat diet-fed animals in all tissues examined. In conclusion, the current study identifies PRAS40 as a physiological target of in vivo insulin action. Phosphorylation of PRAS40 is increased by insulin in human, rat, and mouse insulin target tissues. In rats, this response is reduced under conditions of HFD-induced insulin resistance.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge