English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytical Chemistry 2017-Nov

Integrated Multifunctional Electrochemistry Microchip for Highly Efficient Capture, Release, Lysis, and Analysis of Circulating Tumor Cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shuangqian Yan
Peng Chen
Xuemei Zeng
Xian Zhang
Yiwei Li
Yun Xia
Jie Wang
Xiaofang Dai
Xiaojun Feng
Wei Du

Keywords

Abstract

The circulating tumor cells (CTCs) in the blood allow the noninvasive analysis of metastatic mechanisms, cancer diagnosis, prognosis, disease monitoring, and precise therapy through "liquid biopsies". However, there is no integrated and robust multifunctional microchip, which not only could highly efficient capture CTCs, but also fast release and lyse cells on one single chip without using other biochemical agents for downstream biomedical analysis. In this work, we integrated the three functions in one electrochemical microchip (echip) by intentionally designing a cactus-like, topologically structured conductive array consisted of a PDMS micropillar-array core and an electroconductive gold coating layer with hierarchical structure. The echip presented a capture efficiency of 85-100% for different cell lines in both buffer solution and whole blood. Moreover, the validity of the echip was further evaluated by using non-small-cell lung cancer patient samples. The electrochemical released cells or lysed-cell solutions could be obtained within 10 min and have been successfully used for mutant detection by DNA sequencing or RT-PCR. The fast release at a relative low voltage (-1.2 V) was originating from an electrochemical cleavage of the Au-S bonds that immobilized antibody on the chip. The electrochemical lysis took place at a high voltage (20 V) with an admirable performance. Thus, the highly integrated multifunctional echip was well demonstrated and promised a significant application in the clinical field.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge