English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2019-Aug

Integrating molecular characterization and metabolites profile revealed CtCHI1's significant role in Carthamus tinctorius L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Dandan Guo
Yue Gao
Fei Liu
Beixuan He
Xinlei Jia
Fanwang Meng
Hai Zhang
Meili Guo

Keywords

Abstract

As a traditional Chinese herb, safflower (Carthamus tinctorius L.) is valued for its florets to prevent cardiovascular and cerebrovascular diseases. Basing on previous chemical analysis, the main active compounds are flavonoids in its florets. Although flavonoid biosynthetic pathway has been well-documented in many model species, unique biosynthetic pathway remains to be explored in safflower. Of note, as an important class of transitional enzymes, chalcone isomerase (CHI) has not been characterized in safflower.According to our previous research, CHIs were identified in a safflower transcriptome library built by our lab. To characterize CHI in safflower, a CHI gene named CtCHI1 was identified. A multiple sequences alignment and phylogenetic tree demonstrate that CtCHI1 shares 92% amino acid identity and close relationship with CHI to Saussurea medusa. Additionally, subcellular localization analysis indicated CtCHI1-GFP fusion protein was mainly in the cell nucleus. Further, we purified CtCHI1 protein from E. coli which can effectively catalyze isomerization of 2',4',4,6'-tetrahydroxychalcone into naringenin in vitro. Via genetic engineer technology, we successfully obtained transgenic tobacco and safflower lines. In transgenic tobacco, overexpression of CtCHI1 significantly inhibited main secondary metabolites accumulation, including quercetin (~ 79.63% for ovx-5 line) and anthocyanins (~ 64.55% for ovx-15 line). As shown in transgenic safflower, overexpression of CtCHI1 resulted in upstream genes CtPAL3 and CtC4H1 increasing dramatically (up to ~ 3.9fold) while Ct4CL3, CtF3H and CtDFR2 were inhibited. Also, comparing the whole metabolomics database by PCA and PLS-DA between transgenic and control group, 788 potential differential metabolites were marked and most of them displayed up-regulated trends. In parallel, some isolated secondary metabolites, such as hydroxysafflor yellow A (HSYA), rutin, kaempferol-3-O-β-rutinoside and dihydrokaempferol, accumulated in transgenic safflower plants.In this study, we found that CtCHI1 is an active, functional, catalytic protein. Moreover, CtCHI1 can negatively and competitively regulate anthocyanins and quercetin pathway branches in tobacco. By contrast, CtCHI1 can positively regulate flavonol and chalcone metabolic flow in safflower. This research provides some clues to understand CHI's differential biochemical functional characterization involving in flavonoid pathway. More molecular mechanisms of CHI remain to be explored in the near future.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge