English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Genomics 2016-Mar

Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xin Jia
Chuangshu Sun
Yongchun Zuo
Guangyue Li
Guobin Li
Liangyu Ren
Guilin Chen

Keywords

Abstract

BACKGROUND

Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus) is an important traditional Chinese herb that is cultivated on a large scale in northwestern China. Understanding plant responses to drought has important effects on ecological environment recovery and local economic development. Here, we combined transcriptomics (Illumina Hiseq 2000) and metabolomics ((1)H-NMR) to investigate how the roots of two-year-old A. mongolicus responded to 14 days of progressive drought stress.

RESULTS

The dried soil reduced the relative water content (RWC) of the leaves and biomass, induced the differential expression of a large fraction of the transcriptome and significantly altered the metabolic processes. PCA analysis demonstrated that the sucrose, proline, and malate metabolites contributed greatly to the separation. Strikingly, proline was increased by almost 60-fold under severe stress compared to the control. Some backbone pathways, including glycolysis, tricarboxylic acid (TCA) cycle, glutamate-mediated proline biosynthesis, aspartate family metabolism and starch and sucrose metabolism, were significantly affected by drought. An integrated analysis of the interaction between key genes and the altered metabolites involved in these pathways was performed.

CONCLUSIONS

Our findings demonstrated that the expression of drought-responsive genes showed a strong stress-dose dependency. Analysis of backbone pathways of the transcriptome and metabolome revealed specific genotypic responses to different levels of drought. The variation in molecular strategies to the drought may play an important role in how A. mongolicus and other legume crops adapt to drought stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge