English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oecologia 1999-Dec

Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M D Smith
D C Hartnett
G W T Wilson

Keywords

Abstract

In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge