English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Respiratory Cell and Molecular Biology 2017-Nov

Intermittent Hypoxia and Hypercapnia Accelerate Atherosclerosis, Partially via Trimethylamine-Oxide.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jin Xue
Dan Zhou
Orit Poulsen
Toshihiro Imamura
Yu-Hsin Hsiao
Travis H Smith
Atul Malhotra
Pieter Dorrestein
Rob Knight
Gabriel G Haddad

Keywords

Abstract

Obstructive sleep apnea (OSA) is a common disorder characterized by intermittent hypoxia and hypercapnia (IHC) during sleep. OSA has been shown to be a risk factor for atherosclerosis, but the relation of IHC to the induction or progression of atherosclerosis is not well understood. To dissect the mechanisms involved, we compared atherosclerotic lesion formation in two mouse models, i.e., apolipoprotein E (ApoE) and low density lipoprotein receptor (Ldlr)-deficient mice, with or without IHC exposure. Ten-week-old ApoE-/- or Ldlr-/- mice were fed a high-fat diet for 4 or 8 weeks while being exposed to IHC for 10 hours/day or room air (RA) for 24 hours/day. En face lesions of the aorta, aortic arch, and pulmonary artery (PA) were examined. Moreover, 3,3-dimethyl-1-butanol (DMB), an inhibitor of microbial trimethylamine (TMA) production, was used to determine the contribution of TMA-oxide (TMAO) to IHC-induced atherosclerosis. Eight weeks of IHC exposure expedited the formation of atherosclerosis in both the PA and aortic arch of ApoE-/- mice, but only in the PA of Ldlr-/- mice (ApoE-/- PA 8 wk, IHC 35.4 ± 1.9% versus RA 8.0 ± 2.8%, P < 0.01). The atherosclerotic lesions evolved faster and to a more severe extent in ApoE-/- mice as compared with Ldlr-/- mice (PA IHC 8 wk, ApoE-/- 35.4 ± 1.9% versus Ldlr-/- 8.2 ± 1.5%, P < 0.01). DMB significantly attenuated but did not totally eliminate IHC-induced PA atherosclerosis. Our findings suggest that IHC, a hallmark of OSA, accelerates the progression of atherosclerosis in the aorta and especially in the PA. This process is partly inhibited by DMB, demonstrating that microbial metabolites may serve as therapeutic targets for OSA-induced atherosclerosis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge