English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Biochemistry 2017-Jul

Intra-articular injection of a substance P inhibitor affects gene expression in a joint contracture model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mark E Morrey
Joaquin Sanchez-Sotelo
Eric A Lewallen
Kai-Nan An
Diane E Grill
Scott P Steinmann
Jie J Yao
Christopher G Salib
William H Trousdale
Nicolas Reina

Keywords

Abstract

Substance P (SP), a neurotransmitter released after injury, has been linked to deregulated tissue repair and fibrosis in musculoskeletal tissues and other organs. Although SP inhibition is an effective treatment for nausea, it has not been previously considered as an anti-fibrotic therapy. Although there are extensive medical records of individuals who have used SP antagonists, our analysis of human registry data revealed that patients receiving these antagonists and arthroplasty are exceedingly rare, thus precluding a clinical evaluation of their potential effects in the context of arthrofibrosis. Therefore, we pursued in vivo studies to assess the effect of SP inhibition early after injury on pro-fibrotic gene expression and contractures in an animal model of post-traumatic joint stiffening. Skeletally mature rabbits (n = 24) underwent surgically induced severe joint contracture, while injected with either fosaprepitant (a selective SP antagonist) or saline (control) early after surgery (3, 6, 12, and 24 h). Biomechanical testing revealed that differences in mean contracture angles between the groups were not statistically significant (P = 0.27), suggesting that the drug neither mitigates nor exacerbates joint contracture. However, microarray gene expression analysis revealed that mRNA levels for proteins related to cell signaling, pro-angiogenic, pro-inflammatory, and collagen matrix production were significantly different between control and fosaprepitant treated rabbits (P < 0.05). Hence, our study demonstrates that inhibition of SP alters expression of pro-fibrotic genes in vivo. This finding will motivate future studies to optimize interventions that target SP to reduce the formation of post-traumatic joint contractures.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge