English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Cancer Therapeutics 2003-Apr

Intracellular acidification abrogates the heat shock response and compromises survival of human melanoma cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ronald A Coss
Christopher W Storck
Constantine Daskalakis
David Berd
Miriam L Wahl

Keywords

Abstract

This study tests the hypothesis that lowering intracellular pH (pHi) in melanoma cells grown at low extracellular pH (pHe) selectively abrogates 42 degrees C-induced heat shock protein (HSP) expression and reduces survival. Cells were acidified by a combination of a 0.2-pH-unit decrease in pHe coupled with the lactate/H+ transport inhibitor alpha-cyano-4-hydroxy-cinnamic acid (CNCn). A mild acute extracellular acidification was used to mimic the acute extracellular acidification observed in tumors that can be induced in vivo by oral glucose administration. CNCn blocks the activity of H(+)-linked monocarboxylate transporters (MCTs), particularly MCT isoform 1 (MCT-1). This transporter removes lactic acid from cells and has a high activity in DB-1 melanoma cells grown at low pHe. The effect of extracellular acidification combined with CNCn on pHi was measured in cells grown at pHe 6.7 and pHe 7.3. Cells grown at pHe 6.7 serve as an in vitro model for cells in an acidic tumor microenvironment. When cells were grown at pHe 6.7 and incubated with CNCn at pHe 6.5, the pHi decreased from 6.9 to below 6.5, and the 42 degrees C induction of HSP70 and HSP27 was blocked. The abrogation of HSP induction correlated positively with decreased clonogenic survival. In contrast, when cells growing at pHe 7.3 were acidified by a 0.2-pH unit to pHe 7.1, the inhibitor had less effect on pHi, which remained above 7.0. Under these conditions, the 42 degrees C-induction of HSPs was not inhibited, and cytotoxicity was not enhanced. These results indicate that a significant decrease in the pHi of melanoma cells can selectively sensitize the cells to 42 degrees C hyperthermia, possibly through the inhibition of HSP expression. This strategy could result in a therapeutic gain, because normal tissues, existing at a pHe above 7.0, would not be sensitized.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge