English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pain 2008-Aug

Intracerebroventricular administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in inflammatory pain.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tatsuo Yamamoto
Alan Kozikowski
Jia Zhou
Joseph H Neale

Keywords

Abstract

BACKGROUND

The peptide neurotransmitter N-Acetylaspartylglutamate (NAAG) is the third most prevalent transmitter in the mammalian central nervous system. Local, intrathecal and systemic administration of inhibitors of enzymes that inactivate NAAG decrease responses to inflammatory pain in rat models. Consistent with NAAG's activation of group II metabotropic glutamate receptors, this analgesia is blocked by a group II antagonist.

RESULTS

This research aimed at determining if analgesia obtained following systemic administration of NAAG peptidase inhibitors is due to NAAG activation of group II mGluRs in brain circuits that mediate perception of inflammatory pain. NAAG and NAAG peptidase inhibitors, ZJ43 and 2-PMPA, were microinjected into a lateral ventricle prior to injection of formalin in the rat footpad. Each treatment reduced the early and late phases of the formalin-induced inflammatory pain response in a dose-dependent manner. The group II mGluR antagonist reversed these analgesic effects consistent with the conclusion that analgesia was mediated by increasing NAAG levels and the peptide's activation of group II receptors.

CONCLUSIONS

These data contribute to proof of the concept that NAAG peptidase inhibition is a novel therapeutic approach to inflammatory pain and that these inhibitors achieve analgesia by elevating synaptic levels of NAAG within pain processing circuits in brain.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge