English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physical Chemistry Chemical Physics 2013-Nov

Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anisha N Patel
Patrick R Unwin
Julie V Macpherson

Keywords

Abstract

The change in surface morphology of oxygen-terminated polycrystalline boron doped diamond (pBDD) during electrochemical oxidation of the neurotransmitter serotonin (5-HT), resulting in a corresponding deterioration of the current signal, is investigated for the first time using both high resolution ex situ and in situ microscopy under a range of different electrochemical conditions. In situ electrochemical-atomic force microscopy (EC-AFM) reveals the formation of a granular film over the surface, which grows faster at higher-doped regions of the electrode surface and increases in thickness with repetitive potential cycles. The film properties were investigated using both cyclic voltammetry, with a range of redox species varying in charge, and conducting-AFM. These studies reveal the film to be positively charged and electrically insulating. The extent to which the film forms during 5-HT oxidation could be significantly minimised using different electrochemical procedures, as verified by voltammetry and in situ EC-AFM. Finally, even after extensive film formation, the original current signal could be recovered simply by leaving the electrode at open circuit potential for a short period of time, highlighting the suitability of BDD electrodes for neurotransmitter detection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge